新疆体彩网

射频芯片国产替代来临(附射频芯片产业链)!



▲ 手机射频芯片逻辑关系图

射频前端器件均有由半导体工艺制备,用于手机端的功率放大器和低噪声放大器主要基于GaN、 GaAs、 SOI、 SiGe、 Si(用于基站端的大功率功率放大器主要采用GaAs和GaN)。滤波器主要品类有SAW和BAW两种,均采用压电材料做基底。RF开关主要基于CMOS、 Si、 GaAs和GaN材料。

射频前端器件均有由半导体工艺制备,用于手机端的功率放大器和低噪声放大器主要基于GaN、 GaAs、 SOI、 SiGe、 Si(用于基站端的大功率功率放大器主要采用GaAs和GaN)。滤波器主要品类有SAW和BAW两种,均采用压电材料做基底。RF开关主要基于CMOS、 Si、 GaAs和GaN材料。

▲ 射频前端器件的工艺技术和应用

典型的4G手机需要支持约40个频段,如B1、 B3、 B5、 B8、 B38、 B41等,每个频段都需要有1路发射和2路接收。发射通路上需要滤波器、功率放大器、开关等,接收通路需要开关、低噪放、滤波器等器件。

在4G LTE频段划分中,有部分频率相近或重合的频段,可以形成射频前端器件共用,业界通常将4G频段划分为低频(698~960Mhz)、中频(1710~2200MHz)和高频(2400~3800MHz),相应的,对应射频前端器件可以形成低频模组、中频模组和高频模组。

▲4G手机射频架构

由于5G增加了新频段,支持新频段就需要增加配套的射频前端芯片。

简化来看,射频发射通路主要是PA和滤波器,接收通路主要是LNA和滤波器,其他如射频开关、 RFIC、电阻、电容、电感均为核心芯片的配套。

▲5G手机射频架构

▲ 简化示意图

二、射频芯片市场

据Yole Development数据, 2018年全球移动终端射频前端市场规模为150亿美元, 预计2025年有望达到258亿美元, 7年CAGR达到8%。

▲ 2018~2025年射频前端芯片市场空间(十亿美元)

▲市场空间扩大来自于单机价值量提升

射频开关(Switch)。射频开关的作用是将多路射频信号中的任一路或几路通过控制逻辑连通, 以实现不同信号路径的切换,包括接收与发射的切换、 不同频段间的切换等, 以达到共用天线、 节省终端产品成本的目的。射频开关的主要产品种类有移动通信传导开关、 WiFi开关、 天线调谐开关等, 广泛应用于智能手机等移动智能终端。

以智能手机为例, 由于移动通信技术的变革, 智能手机需要接收更多频段的射频信号。2011年及之前智能手机支持的频段数不超过10个, 而随着4G通信技术的普及, 至2016年智能手机支持的频段数已经接近40个。5G应用支持的频段数量将新增50个以上, 全球2G/3G/4G/5G网络合计支持的频段将超过91个。因此, 移动智能终端中需要不断增加射频开关的数量以满足对不同频段信号接收、 发射的需求。

据Yole Development预测, 分立射频开关开关的市场规模将从2018年的6亿美元增长至2025年的9亿美元,年均复合增长率为5%。

▲典型射频开关的原理图

▲ 2018-2025年分立式普通射频开关市场空间(亿美元)

天线调谐开关(Tuner)。Tuner主要给天线做配套。全面屏的普及, 紧凑的机身设计, 智能手机留给天线的空间尺寸不断受到限制, 这导致天线系统的整体效率降低, 需要天线调谐开关提高天线对不同频段信号的接收能力, 天线调谐开关的重要性和需求也日益增长。相较普通开关, 天线调谐开关有着极高的耐压要求, 同时导通电阻和关断电容对性能影响极大, 由此对产品提出了极高的设计和工艺要求。

4G手机一般需要4~6个天线, 而5G手机至少需要6~10个天线, 对应的天线Tuner需求适配性增长。据Yole Development预测, 天线调谐开关的市场规模将从2018年的5亿美元增长至2025年的12亿美元, 年均复合增长率为13%。

▲典型Tuner的原理图

▲ 2018-2025年Tuner市场空间(亿美元)




上一篇:玩转开关时间、谐波、互调失真测试?这一篇就够了!
下一篇:连江:108名爱心人士捐款 资助179名学生